METADATA AND NUMERICAL DATA CAPTURE: INTERFACIAL TENSION

3 - Components

Guided Data Capture (GDC)

This tutorial describes

METADATA AND NUMERICAL DATA CAPTURE:

for **3-components**

INTERFACIAL TENSION

with the Guided Data Capture (GDC) software.

NOTE:

The tutorials proceed sequentially to ease the descriptions. It is not necessary to enter *all* compounds before entering *all* samples, etc.

Compounds, samples, properties, etc., can be added or modified at any time.

However, the hierarchy must be maintained (i.e., a property cannot be entered, if there is no associated sample or compound.)

The experimental data used in this example is from:

Interfacial Tensions of Two-Phase Ternary Systems

Eizo Sada, 1 Shigeharu Kito, and Mineo Yamashita2

Department of Chemical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464, Japan

Interfacial tensions of two-phase aqueous ternary systems are presented. Measurements are conducted by use of the capillary rise method of Bartell and Miller for seven systems at 25°C and under the condition of equilibrium distributions of solute concentrations between the phases.

376 Journal of Chemical and Engineering Data, Vol. 20, No. 4, 1975

INTERFACIAL TENSION (3 ñ Components) **BENZENE, WATER, ETHANOL**

Table I. Interfacial Tensions of Ternary Systems at 25°C						
Aqueous phase			Organic phase			Inter- facial
Concn, wt %		Density, g/cc	Concn, wt %		Density, g/cc	tension, dyn/cm
Benzene(1)—water(2)—ethanol(s)						
(1)	(3)		(1)	(3)		
0.2	10.8	0.9782	98.6	1.2	0.8726	17.20
0.3	21.7	0.9626	97.1	2.6	0.8711	9.37
1.6	36.2	0.9365	94.0	5.4	0.8679	3.64
3.6	43.7	0.9172	91.3	7.9	0.8656	1.99
8.6	50.1	0.8944	87.3	11.4	0.8629	1.09
21.2	52.0	0.8690	79.3	18.0	0.8588	0.04

This data set is considered here.

Experimental Method Info:

Capillary rise

Temperature control: 0.02 K

1. TYPE the conversion factor to convert the values in the manuscript table to $i\ N/m\hat{i}$.

2. CLICK OK

SELECTION of # of Phases in Equilibrium and # of Constraints

1. SELECT **Phase 2** (*Liquid mixture 2*), **Constraint(s)** (*Temperature & Pressure*) and the **Independent Variable(s)** (*Temperature*) from the menus.

NOTE: Simple CUT/PASTE procedures can be used within the table to convert the original table into the required number of columns. (This can also be done externally in spreadsheet software, e.g., EXCEL.)

END

Continue with other compounds, samples, properties, reactions, etc...

or save your file and exit the program.